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1.  INTRODUCTION  

1.1.  Product Overview 

1.1.1.  Product Description  

The BOASNRA is a concatenation of two acronyms – BOA and SNRA. The BOA stands for 
the Belkin-O’Reilly Algorithm for front detection (Belkin and O’Reilly, 2009). The SNRA 
stands for the Stripe Noise Reduction Algorithm developed in 2011-2012 and not described 
yet in peer-reviewed literature. Both algorithms are documented in detail below. Since the 
SNRA takes advantage of the BOA, this document presents these two algorithms as a 
single entity, BOASNRA. This approach is most convenient to the user, both conceptually 
and operationally, because the BOASNRA is implemented as a single code. Throughout 
the rest of this document, we use “BOASNRA” and “the algorithm” interchangeably, unless 
explicitly stated otherwise. 
 
The BOASNRA maps oceanic fronts from satellite imagery. Oceanic fronts are narrow 
zones of elevated gradients of properties such as temperature, salinity, nutrients, 
chlorophyll etc. (Belkin, 2002; Belkin, Cornillon, and Sherman, 2009). The BOASNRA was 
designed primarily to map fronts in chlorophyll (Chl) fields. The emphasis on Chl stems 
from the fact that Chl is most important to marine biota. Maps of Chl fronts can be directly 
used in marine fisheries, marine conservation, environment protection, and other 
applications and operations. The current experience with this algorithm has shown that the 
BOASNRA is quite universal. Of particular importance is the algorithm’s successful 
application to sea surface temperature, SST (Hyde, O’Reilly, and Belkin, 2008; Belkin, 
Hyde, and O’Reilly, 2012). The algorithm has also been applied to sea surface height, 
SSH, from satellite altimetry, and to sea surface roughness, SSR, from the Synthetic 
Aperture Radar, SAR (Gary Borstad, private communication, 2012). Even though the 
BOASNRA has been shown to be quite universal, we only refer to Chl throughout this 
document. 
 
The BOASNRA uses MODIS Aqua Level 2 fields (images) of Chl as input. Every 
elementary application of the algorithm involves a single image of Chl as input. The 
algorithm’s output consists of several files. The algorithm generates fields of gradient 
magnitude and gradient direction that conform to the original field of Chl. The output values 
are calculated for each pixel of the original image. Details of input and output are described 
in respective sections below.  
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1.1.2.  Product Requirements 

The BOASNRA is developed to provide maps of oceanic fronts to diverse groups of end-
users such as fisheries managers, professional and recreational fishermen, sailors, 
weather forecasters, naval oceanographers, research scientists, educators, marine 
environmental conservationists, and general public. Each group of users might have 
different interests and expectations yet their interests and expectations substantially 
overlap, which allowed product requirements to be formulated. The main requirement to 
frontal products generated to by the BOASNRA is their visualization as geographical maps 
that can be easily comprehended and navigated by an average end-user. Therefore during 
the development of BOASNRA a heavy emphasis was made on frontal mapping. By far the 
most important parameter of oceanic fronts is their location in a geographical reference 
frame. The second most important parameter is the frontal strength equated with frontal 
gradient magnitude.  The next most important parameter is frontal orientation equated 
with frontal gradient direction. Consequently, the product requirements stipulate generation 
of two frontal maps per each satellite image: (1) map of gradient magnitude, GM; (2) map 
of gradient direction, GD. Most users require frontal maps to be highly detailed and not 
generalized or smoothed, so they expect frontal products to retain the original spatial 
resolution of satellite imagery. Therefore the frontal maps generated by the BOASNRA are 
pixel-based, with the pixel size equal to the spatial resolution of satellite imagery. Since the 
algorithm is developed for MODIS Aqua, this requirement means that frontal maps should 
have spatial resolution of 1 km. The image format of frontal maps must be fully portable 
across the whole spectrum of computers; JPEG and PNG, among other formats, provide 
such portability, while Web (online) publication of such maps provides the most convenient, 
fast, and cost-effective way of product dissemination. The next parameter of importance is 
latency as a measure of time delay between satellite data acquisition and generation of 
frontal products for end-users. Here expectations and requirements of different groups of 
users vary widely, from hours in mission-critical applications such as naval oceanography, 
search-and-rescue, and yacht-racing to a few days in ship route optimization, deep-sea 
fishing, and weather forecasting to months in fisheries management and years in marine 
environmental conservation and education. Fortunately, the available data processing 
system is capable of meeting all but the most stringent requirements of diverse customers 
by providing frontal maps within a few days of satellite data acquisition.       

1.2.  Satellite Instrument Description 

The MODIS (Moderate Resolution Imaging Spectroradiometer) instrument is flown 
aboard the Aqua (EOS PM-1) satellite (http://modis.gsfc.nasa.gov/about/)  launched on 
May 4, 2002 onto a low-Earth, Sun-synchronous orbit, with the following elements:  
semimajor axis, 7077.75 km; eccentricity, 0.001203; inclination, 98.14°; apoapsis, 708 km 
(440 mi); periapsis, 691 km (429 mi); orbital period, 98.4 minutes; orbits per day, 14.5625. 
 

http://modis.gsfc.nasa.gov/about/
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The MODIS Aqua provides high radiometric sensitivity (12 bit) in 36 spectral bands (from 
0.4 µm to 14.4 µm), of which bands 8-16 are relevant to ocean color (see MODIS Aqua 
Technical Specifications below). A ±55-degree scanning pattern at the EOS orbit with a 
708-km apoapsis achieves a 2,330-km swath and, combined with a near-polar, slightly 
retrograde orbit (inclination, 98.14°) provides global coverage every 1 to 2 days. The ocean 
color-relevant bands 8-16 are imaged at a nominal resolution of 1 km at nadir.  
 
The MODIS Aqua Technical Specifications relevant to ocean color and chlorophyll: 
Orbit: apoapsis, 708 km; periapsis, 691 km; 1:30 p.m. ascending node, sun-synchronous, 
near-polar, circular  
Scan Rate: 20.3 rpm, cross-track  
Swath Dimensions: 2330 km (cross-track) by 10 km (along-track at nadir)  
Spatial Resolution of bands 8-16: 1000 m 
Bands (bandwidth in nm): 8 (405-420), 9(438-448), 10(483-493), 11(526-536), 12(546-
556), 13(662-672), 14(673-683), 15(743-753), 16(862-877). 
 
2. ALGORITHM DESCRIPTION 

2.1.  Processing Outline 

The processing outline of the BOASNRA algorithm is shown in a flowchart (Figure 2.1-1) 
and described below. Detailed descriptions of all steps are provided in the next sections. 
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Fig. 2.1-1. Flowchart of the BOASNRA algorithm. 
Chlorophyll arrays extracted from MODIS-Aqua Level 2 HDF files are used as input data 
into the algorithm.  Cloud filled and suspect pixels are masked prior to processing.   The 
first and most critical step is to apply a contextual adaptive shape-preserving median filter 
(CASPMF). The CASPMF performs two major tasks. It eliminates the so-called impulse 
noise, while at the same time preserves step-like and ramp-like fronts as well as peaks 
(blooms) and ridges (Chl enhancement line features typically associated with physical 
fronts). The next step is Gaussian smoothing, which suppresses high-frequency noise.   
The frontal edges are then detected by convolution, which outputs pixel-based gradients 
projected onto X- and Y-axis. From the X- and Y-components, gradient magnitude 
(GRAD_MAG) and gradient direction (GRAD_DIR) are calculated for each pixel.  After 
applying azimuth correction to GRAD_DIR, both GRAD_MAG and GRAD_DIR are 
processed with the SNRA (Stripe Noise Reduction Algorithm), which reduces stripe noise 
often present in MODIS images. GRAD_MAG and GRAD_DIR are processed by SNRA 
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independently. After having been corrected by SNRA, both GRAD_MAG and GRAD_DIR 
are provided as the BOASNRA output. 

2.2.  Algorithm Input   

The BOASNRA algorithm uses Level-2 Chl data from MODIS Aqua as input. 
  
The Ocean Level-2 Data Products are described on the Ocean Color Web site maintained 
by the NASA Goddard Space Flight Center 
(http://oceancolor.gsfc.nasa.gov/DOCS/ocformats.html#3 ): The MODIS Level-2 product is 
generated from a corresponding Level-1B product. The chlorophyll-a concentration 
(denoted in this document simply as Chl) is derived from the Level-1B raw radiance counts 
by applying atmospheric corrections and bio-optical algorithms. The Level-2 product 
corresponds exactly in geographical coverage (scan-line and pixel extent) to that of its 
parent Level-1B product and is stored in one physical HDF file. Detailed information on the 
Level-2 format specifications can be found in the Ocean Level-2 Data Product document:  
  http://oceancolor.gsfc.nasa.gov/DOCS/Ocean_Level-2_Data_Products.pdf “ 
 
The MODIS (Moderate Resolution Imaging Spectroradiometer) instrument is flown aboard 
the Aqua satellite (http://modis.gsfc.nasa.gov/about/). The Aqua MODIS provides high 
radiometric sensitivity (12 bit) in 36 spectral bands (from 0.4 µm to 14.4 µm), of which 
bands 8-16 are relevant to ocean color (see MODIS Aqua Technical Specifications below). 
A ±55-degree scanning pattern at the EOS orbit with an apoapsis of 705 km and a 
periapsis of 691 km achieves a 2,330-km swath and, combined with the near-polar orbit 
(inclination, 98.14°), provides global coverage every 1 to 2 days. The ocean color-relevant 
bands 8-16 are imaged at a nominal resolution of 1 km at nadir.  
 
The MODIS Aqua Technical Specifications relevant to ocean color and chlorophyll: 
Orbit: apoapsis, 705 km; periapsis, 691 km; 1:30 p.m. ascending node (local time of 
northward crossing of the equator); sun-synchronous; near-polar retrograde (inclination, 
98.14°); circular. 
Repeat cycle: 16 days.  
Scan rate: 20.3 rpm, cross-track.  
Swath dimensions: 2,330 km (cross-track) by 10 km (along-track at nadir*).  
Spatial resolution (pixel size at nadir) of bands 8-16: 1000 m. 
Bands (bandwidth in nm): 8 (405-420), 9(438-448), 10(483-493), 11(526-536), 12(546-
556), 13(662-672), 14(673-683), 15(743-753), 16(862-877).  
*Note on the “bow tie” effect: Unlike other scanning sensors (e.g., AVHRR), the along-track 
dimension of MODIS swath varies across track depending on viewing angle and increasing 
away from nadir, thereby causing the so-called “bow tie” effect, that is scan lines becoming 
wider and overlapping with one another at off-nadir angles.  

http://oceancolor.gsfc.nasa.gov/DOCS/ocformats.html#3
http://oceancolor.gsfc.nasa.gov/DOCS/Ocean_Level-2_Data_Products.pdf
http://modis.gsfc.nasa.gov/about/
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2.3.  Theoretical Description 

2.3.1.  Physical Description 

Introduction 
The BOASNRA consists of two algorithms, BOA and SNRA. BOA performs fronts 
detection, while SNRA performs stripe noise reduction. Formally, these two algorithms are 
independent and therefore are described in respective separate sections below. In practice, 
the BOASNRA works as a single algorithm implemented as a single code. The reason for 
merging both algorithm into a single algorithm and single code is obvious: By reducing 
stripe noise, the SNRA facilitates front perception and visual detection by the end user.     
 
Front detection 
The BOA was developed to detect fronts in satellite imagery of ocean color (proxy of 
chlorophyll concentration, Chl). This is the first-ever algorithm explicitly designed to detect 
Chl fronts. All previous algorithms (see Belkin and O’Reilly (2009) for a bibliography) were 
designed to detect SST fronts. Physically, Chl fronts are fundamentally different from SST 
fronts. Also, there are endemic features in Chl fields that are not encountered in SST fields, 
namely (1) Chl enhancement at physical (hydrographic) fronts and (2) point-wise Chl 
blooms. There are two reasons for Chl fronts to be fundamentally different from SST fronts. 
The first reason is that Chl is concentration (of a biologically active pigment), whereas SST 
is a scalar intensive physical property of sea water. When two adjacent water masses have 
different physical properties (for example, different temperature, salinity, and density), 
these water masses are separated by a physical front. In the great majority of cases, such 
fronts are associated with (a) geostrophic along-front currents and (b) surface convergence 
toward the front. These two processes are interconnected. The most important distinction 
between Chl and SST fronts is related to surface convergence. When two water masses 
with two different SSTs (T1>T2) converge, the frontal SST ranges from T1 to T2, that is the 
front temperature FT is intermediate between T1 and T2: T1>FT>T2. Owing to the surface 
convergence, the SST front is usually sharp and can be described by a step function or a 
ramp model (Belkin and O’Reilly, 2009).  
 
The situation can be very different in case of Chl fronts. When two water masses with 
different concentrations of Chl (C1>C2) converge, the resulting cross-frontal pattern often 
features a sharp peak termed “chlorophyll enhancement” (Ryan et al., 1999a, 1999b). This 
phenomenon can be accounted by two mechanisms. The first mechanism involves 
mechanical concentration of algae containing chloroplasts. The most common algae, 
Dinoflagellates (among other things, they cause harmful algal blooms) range in size from 
about 5 to 2,000 micrometers or 0.0002 to 0.08 inch (Britannica Online Encyclopedia). As 
the concentration of algae peaks at a physical front (associated with surface convergence 
toward the front), so does the Chl concentration. The second process (or rather group of 
processes) involves biological dynamics that results in proliferation of algae at a physical 
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front, which causes Chl concentration to peak at the physical front. The second process 
may operate independently from surface convergence toward physical fronts. 
 
Another phenomenon endemic to Chl is point-wise Chl blooms (PWCB). The radial 
structure of PWCBs is similar to the cross-frontal structure of Chl enhancement at physical 
fronts. Both structures can be described by a peak model (Belkin and O’Reilly, 2009). The 
PWCBs are ubiquitous in the ocean. The size of an individual PWCB can vary from O(100 
m) to O(10 km). The existence of PWSBs is partly accountable for the observed patchiness 
of Chl distribution, which plays an important role in ecology of organisms that populate the 
surface layer. Another important aspect of PWCBs is their contribution to the total Chl 
content of the surface layer. Because of relatively small sizes of PWCBs, most of them 
probably go unreported. All previous algorithms for front detection tend to filter out the 
PWCBs as impulse noise. 
 
The BOA is explicitly designed to retain such critically important features as Chl 
enhancement at physical fronts and Chl peaks (PWCBs). A key element of the BOA is a 
novel feature-preserving context-sensitive median filter. This filter suppresses impulse 
noise, with one-pixel spikes eliminated completely. This filter does not smooth out the most 
important features: It leaves intact (a) step-like and ramp-like Chl fronts, (b)  Chl ridges 
(“roof edges”) caused by Chl enhancement along line features (physical fronts), and (c) Chl 
peaks or PWCBs.                  
 
Stripe noise reduction 
A significant percentage of satellite imagery provided by MODIS Aqua is corrupted by 
stripes that degrade image quality and hinder visual perception of fronts by end users. The 
stripes appear in Level 1 data. From there, they propagate to Level 2 products and 
eventually to Level 3 products. A great deal of effort was spent to reduce stripe noise. All 
previous attempts were focused on Level 1 data. The stripe noise reduction algorithm 
(SNRA) developed in this project works with Level 2 swath data. There are several 
advantages of working with stripes in Level 2 data over doing the same with Level 3 data. 
First and foremost, stripes in L2 are narrower and better defined than in L3, where same 
stripes are much wider and more diffuse. In L2, scans and stripes are always horizontal 
and straight, which greatly simplifies the design of SNRA. The typical width of stripes in L2 
is 1-to-2 pixels, which means that such stripes can be eliminated by a 5-point orthogonal 
median filter running normally to these stripes in the vertical direction. Another key 
advantage of working with L2 data stems from the observed fact that stripes in L2 are 
equidistant. And yet another experimental fact that simplifies the design of SNRA for L2 
data is an empirical relation observed between stripe width W and stripe spacing S, which 
is W<0.5S. This means that any orthogonal median filter with a window height H less than 
stripe spacing S but more than twice stripe width (2W<H<S) is optimal for stripe reduction 
because such a filter would never span more than a single stripe. 
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The equidistance of stripes in L2 obviates the need for stripe detector, which would 
otherwise be necessary (for example, in L3). The simplest stripe detector is based on 
autocorrelation function computed for all vertical slices normal to horizontal stripes. This 
approach is viable in case of non-equidistant stripes, allowing such stripes to be detected 
and indexed prior to running stripe suppressor to reduce striping noise. In our case, this 
approach was not required. In the future, this approach could be used in complicated 
situations when stripe spacing varies or stripes are not straight (curvilinear). 
 
Another important physical quality of stripes is their brightness. Visual inspection of striping 
patterns in 3,500 Chl images obtained by MODIS Aqua over a two-month period from April 
1 to May 31, 2012, has shown that the stripe brightness is not constant along each 
individual stripe. In those cases when stripe brightness is approximately constant along 
each stripe, the stripe brightness may change from one stripe to another. Moreover, relative 
brightness of stripes (relative to adjacent scans/rows) may also change from one stripe to 
another. It may also change, albeit rarely, along the same stripe, so a bright stripe becomes 
a dark stripe within the same scan/row. The above physical properties prevent usage of 
simple thresholding based on maximum brightness (or minimum brightness in case of dark 
stripes). These properties likewise prevent usage of advanced thresholding based on 
relative brightness. A case can be made for adaptive contextual thresholding based on 
dynamic relative stripe brightness. Such an algorithm, however, is bound to be quite 
complicated and not necessarily robust.   Fortunately, the above physical properties of 
stripes in L2 do not present significant obstacles to orthogonal median filters applied 
normally to horizontal stripes.                 

2.3.2.  Mathematical Description 

Introduction 
The advent of remote sensing from satellites has enabled global monitoring of oceanic 
fronts from space. The first property used for this purpose was sea surface temperature, 
SST. In a seminal worldwide survey of oceanic fronts, Legeckis (1978) demonstrated a 
variety of SST fronts formed by vastly different physical processes — water mass 
convergences, river outflows, tidal mixing, coastal and open ocean upwelling etc. These 
processes create sharp horizontal gradients of SST identified with thermal fronts. 
Such gradient zones or “edges” can be detected in SST imagery by objective methods. 
Two approaches became widely accepted: the gradient method thanks mainly to its 
simplicity (e.g. Kazmin and Rienecker,1996; Moore et al.,1997,1999; Kostianoy et al., 2004; 
Breaker et al., 2005); and the histogram method (Cayula and Cornillon, 1992, 1995, 1996), 
owing to its robustness and ample worldwide validation (Kahru et al., 1995; Belkin et al., 
1998; Ullman and Cornillon, 1999; Ullman and Cornillon, 2000; Hickox et al., 2000; Belkin 
et al., 2001; Ullman and Cornillon, 2001; Mavor and Bisagni, 2001; Belkin et al., 2003; 
Belkin and Cornillon, 2003, 2004, 2005; Nieto and Demarcq, 2006; Miller, 2009; Belkin, 
Cornillon, and Sherman, 2009). Other methods have been tried as well, notably the Canny 
(1986) edge detector (e.g. Castelao et al., 2006; Nieto and Demarcq, 2006), the Holyer and 
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Peckinpaugh (1989) cluster-shadow method (e.g. Cayula et al., 1991), and the Vazquez et 
al. (1999) entropic approach (e.g. Shimada et al., 2005). 
 
Thermal fronts enjoyed much-deserved attention partly because of widely available high-
quality global imagery from NOAA satellites that extends back to mid-1980s. Oceanic 
parameters other than SST were not widely available until 1997 when SeaWiFS ocean 
color imagery became available, ushering in the era of global monitoring of estimated 
chlorophyll-a (Chl) concentration from space. The sheer and ever increasing volume of 
color imagery called for objective methods of its analysis; in particular, automatic detection 
of chlorophyll fronts has been widely recognized as a high-priority task (Chan, 1999; 
Bontempi and Yoder, 2004; Stegmann and Ullman, 2004; Miller, 2004; Nieto and Demarcq, 
2006; Miller, 2009). And yet progress in this direction was limited, especially when 
compared with automatic detection of SST fronts. The most fundamental reason for this lies 
in the inherent complexity of Chl field versus SST, with Chl featuring spatial patterns that do 
not exist in SST, namely Chl blooms and Chl enhancement at thermohaline fronts. This 
fundamental difference between Chl and SST fields is illustrated by two respective 
conceptual models of a generic front separating shelf and oceanic waters usually called the 
shelf–slope front, SSF, or shelf break front (Fig. 2.3-1). A typical SST or Chl front can be 
modeled as a step function or ramp since the front is a sharp boundary between two 
relatively uniform water masses with different temperatures or Chl concentration (Fig. 2.3-1, 
top left). This simple structure can be seen in a Chl image of the SSF off the U.S. Northeast 
(Fig. 2.3-1, top right). However, the same front during a different season or year may 
appear quite differently in Chl field. The most peculiar cross-frontal structure characteristic 
of Chl field features elevated Chl peaking on – or close to – a respective TS-front. This 
phenomenon is called chlorophyll enhancement (at a hydrographic (physical) front); its 
transverse structure can be modeled as a peak (Fig. 2.3-1, bottom left). The Chl image of 
the SSF off the U.S. Northeast (Fig. 2.3-1, bottom right) shows a large-scale Chl 
enhancement extending over 1000 km along the SSF; similar patterns have been 
repeatedly observed and extensively studied in this area (Marra et al., 1990; Ryan et al., 
1999a, b; Stegmann and Ullman, 2004). The exact form of the peak model may vary in the 
above concept that simply illustrates profound differences often observed between SST 
and Chl patterns in frontal zones.  
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Fig. 2.3-1. Two types of Chl fronts. Modified after Belkin and O’Reilly (2009). 

 
Another important aspect of the Chl field is patchiness on a variety of scales, evident from 
ocean color imagery and in situ data. Spatial structure of Chl field is a product of interplay 
of physical, chemical, and biological processes, and therefore is inherently more complex 
than the structure of physical fields such as temperature and salinity. Patchiness is a 
hallmark of Chl field. It may be formed by physical dynamics, e.g. by the underlying 
patchiness of the TS-field, and it may also be formed by biological dynamics; it may also 
result from physical–biological interactions and feedbacks. The observed richness of spatial 
patterns and features in the Chl field defies a simplistic approach to front detection based 
on a single model of cross-frontal transverse structure, be it a step, ramp, peak, or patch. 
However, there is a common feature associated with the various patterns, which is the local 
maximum gradient. This brings us back to the gradient method and its basic problem: 
noise. Since every differentiation (gradient computation) results in noise amplification, the 
noise should be dealt with before front detection/feature extraction. By developing and 
validating a new front detection algorithm, Belkin and O’Reilly (2009) demonstrated that 
effective noise suppression combined with feature preservation allows spatial gradients to 
be computed and mapped in a way that brings out diverse frontal patterns in the Chl field 
as well as SST fronts. 
 
 



NOAA  
  BOASNRA 

Algorithm Theoretical Basis Document 
  Page 17 of 59 

 
 

 

Front detection algorithm 
The BOASNRA algorithm is designed specifically for detecting main features in Chl 
imagery (Belkin and O’Reilly, 2009). It is based on the following premise derived from (a) 
our experience in satellite frontal oceanography and (b) latest developments in digital 
image processing and pattern recognition: Fronts and other features of interest such as Chl 
peaks (blooms) and Chl enhancement at physical (hydrographic) fronts (Ryan et al., 1999a, 
b) can be revealed in satellite images by a contextual adaptive filter that removes noise but 
preserves these features. This filter thus is called feature-preserving or shape-preserving 
because it preserves the shape of well-defined sharp extrema. This is the first and main 
step performed by the algorithm. The second step is traditional in edge detection: since the 
features of interest are characterized by enhanced gradients, an edge detector, e.g. Sobel 
operator, brings out these features in images that have been processed with the contextual 
adaptive feature-preserving filter. 
 
The median filter (MF) is a highly efficient technique of digital filtering that removes isolated 
noise while preserving edges in data. When applied to a one-dimensional (1D) array, MF 
replaces the central value of a sliding window of an odd size by the median of sorted 
(ranked) data from this window. When applied to an image, MF first converts each window 
matrix to a 1D array, then proceeds as above. MF is used as a pre-processing step of other 
front detection algorithms (e.g. Cayula and Cornillon, 1992, 1995). Thanks to its edge-
preserving property, we have chosen MF for the first step of our front detection algorithm. 
At the same time, it was necessary to eliminate another – undesired – property that 
standard MF shares with all other digital filters; this property can be called extremum 
alteration. Indeed, standard MF always alters peaks and ridges by clipping them. In other 
words, standard MF degrades isolated sharp extrema and roof edges by making them 
blunt. This property is especially detrimental to, and therefore not acceptable in, any 
algorithm for feature extraction from Chl field since sharp isolated extrema (peaks) 
correspond to local Chl blooms, while ridges (roof edges) correspond to Chl enhancement 
at fronts — and both features are common in Chl fields. 
 
To avoid extremum alteration, the digital filter must be able to recognize sharp extrema 
(peaks) and ridges (roof edges) – and leave them intact. In other words, the filter has to be 
context-sensitive and selective (adaptive). The central novel idea of our median filter is that 
it considers a small window within a larger context; therefore this method can be called 
contextual median filter. In oceanography, the first contextual median filter was developed 
for automatic classification of vertical profiles; it was validated on large climatological data 
sets from the North Pacific (Belkin, 1986, 1991). Since vertical profiles are 1D arrays, all 
possible 1D configurations of sharp extrema were explicitly described by a set of 
inequalities and hard-coded into a selective MF. This approach has been extended into 2D 
and applied to satellite imagery by Belkin and O’Reilly (2009). Specifically, satellite data 
(Chl values) from a sliding 3×3-pixel window are considered within the context of a larger 
5×5-pixel window. The main problem in 2D is that there are too many possible 
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configurations of 2D sharp extrema and roof edges to be explicitly described by a set of 
inequalities; this would be impractical. Instead, the contextual MF performs its task in three 
steps: 

(1) It makes all possible omni-directional 1D slices across the center of a sliding 5×5-
pixel 2D window;  

(2) It analyzes these slices;  
(3) It makes a decision whether to filter the window's central pixel or leave it intact. 

 
The above description of the algorithm is elaborated below as a pseudo-code: 
 

Contextual median filter (MF3in5) pseudo-code 
 

1. Check for peaks and troughs within 1D 5-point slices through a sliding 5×5 window. The 
window slides east–west (E–W), north–south (N–S) across the image: 
 
for I=3:NROWS-2  

for J=3:NCOLS-2 
Make the WE slice across the window center A(I,J); 
Make the NS slice across the window center A(I,J); 
Make the NW–SE slice across the window center A(I,J); 
Make the NE–SW slice across the window center A(I,J); 
If the window center A(I,J) is a 5-point minimum or maximum along all four 5-
point 1D slices, flag it as Peak-5 

end 
end 
 
2. Check for peaks and troughs within 1D 3-point slices through sliding 3×3 window. The 
window slides west–east, north–south across the image: 
for I=3:NROWS-2 

for J=3:NCOLS-2 
If the window center A(I,J) is a 3-point maximum or minimum in 2D, mark it as 
Peak-3 

end 
end 
 
3. Apply the selective 2D 3×3 median filter within sliding 3×3 window. If the window center 
is a significant 5-point extremum (Peak-5), leave it intact (do not blunt it with median filter), 
otherwise if the window center is a spike (Peak-3) use the 2D 3×3 median filter: 
for I=3:NROWS-2 

for J=3:NCOLS-2 
if (Center is Peak-5) skip the 3×3 Median Filter  
elseif (Center is Peak-3) 



NOAA  
  BOASNRA 

Algorithm Theoretical Basis Document 
  Page 19 of 59 

 
 

 

apply the 3×3 Median Filter 
end 

end 
end 
=================== end of pseudo-code ============================= 
 
The above description and pseudo-code explain how contextual MF works during a single 
pass over a satellite image. In many applications, median filters are only applied once, as a 
single pass, since computational cost of iterative MF is often believed to be prohibitive. In 
reality, however, the iterative MF is quite efficient and computationally inexpensive owing to 
the following properties (Gallagher and Wise, 1981): 

(1) Iterative MF in 1D always converges: After a number of iterations, the next iteration 
does not alter the signal; 

(2) Iterative MF converges to the so-called root signal, which is locally monotonous that 
is the root signal consists of monotonous segments (ramps) and plateaus. 

 
Iterative MF converges fast: The number of iterations until convergence, NITER, does not 
exceed (N−2)/2, where N is the number of data points in the 1D array to be filtered. Since 
NITER is a linear function of N, iterative MF converges much faster than most digital filters, 
whose convergence rate depends nonlinearly on the number of data points; typically, 
NITER~N2. In our experiments with model (synthetic) images described below, MF 
converged after a few iterations. In test experiments with real satellite images the rate of 
convergence was slower. This issue is addressed below in the section about testing the 
algorithm. 
 
There are two varieties of median filters: recursive and non-recursive (standard). The 
recursive filter uses part of its output on the previous step as part of its input during the next 
step. The standard MF is non-recursive. The MF used in the BOASNRA is non-recursive 
(standard). Even though recursive MF has certain advantages over non-recursive MF (e.g., 
Qiu, 1996), practical implementation of recursive MF is more complex than that of standard 
MF (Stork, 2003). Therefore we have chosen the standard approach. Our previous 
experiments with MF have shown that the output (root signal) is not overly sensitive to the 
choice between recursive vs. non-recursive MF. 
 
Noise removal and smoothing 
Since we are interested in preserving even relatively small-scale features, just a few pixels 
across, we do not use any smoothers, e.g. Gaussian, often used in applications elsewhere. 
In those applications, the signal (object) has a substantially larger scale, which is typically 
at least an order of magnitude larger than the noise; therefore a smoothing operator might 
improve the object's visibility in the image. In our case, the signal-to-noise scale ratio can 
be as small as 3, e.g. 3-pixel Chl peaks versus 1-pixel spikes. Therefore, in our situation, 
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any smoothing could be detrimental to gradient computation and climatology of relatively 
small but biologically important features in Chl field. 
 
Gradient computation 
The gradient vector is computed by the Sobel operator consisting of two 3×3 convolution 
masks or kernels: GX=[−1 0 +1;−2 0 +2;−1 0 +1]; and GY=[+1 +2 +1; 0 0 0; −1 −2 −1]; GY 
is simply GX rotated 90 degrees counter-clockwise. These kernels are used to calculate 
two images, Gx and Gy respectively, containing approximations for derivates in X and Y 
directions. If A is the original image, then Gx=GX*A and Gy=GY*A, where * is the 
convolution sign. At each point of the image, gradient magnitude and direction are 
computed as GM=sqrt(Gx2+Gy2) and GD=arctan(Gy/Gx) respectively. The Sobel operator 
is known as a simple and effective way of enhancing visibility of edges in digital images 
and iswidely used in a variety of applications, partly owing to its ultimate simplicity. 
 
Gradient mapping: log-transformation of Chl data 
Chlorophyll distribution on the global scale is approximately lognormal (Campbell, 1995). 
Therefore Chl data are usually log-normally transformed before any processing, mapping 
and statistical evaluation (e.g. Gregg and Conkright, 2001; Gregg and Casey, 2004). We 
have computed global Chl distribution from SeaWiFS, 1997–2007 (not shown) to confirm 
earlier findings based on spatially limited or irregular data (e.g. Campbell, 1995). We have 
also found a similar lognormal distribution in our test area (western North Atlantic) which 
encompasses shelf, slope and Sargasso Sea water and the three-orders-of magnitude 
range in surface Chl. Therefore we have log-normally transformed original Chl data and 
calculated Chl gradient from the log-normally transformed data. Our logarithmic gradient of 
Chl at every pixel is the difference between natural logarithms of Chl at adjacent pixels that 
is the natural logarithm of the ratio of adjacent Chl values. 
 
Stripe Noise Reduction Algorithm 
The MODIS images are known to be corrupted by stripes. Several groups in various 
countries developed different approaches to stripe noise reduction in Level-1 imagery 
(Rakwatin et al., 2007, 2009; Tsai and Chen, 2008; Di Bisceglie et al., 2009; Shen and 
Zhang, 2009; Bouali and Ladjal, 2011; Shen et al., 2011; Gladkova et al., 2012; see also 
the recent destriping software for Level-1 imagery developed at the University of 
Wisconsin, available at http://cimss.ssec.wisc.edu/imapp/destripe.shtml). Most 
developments in this field have taken advantage of hardware-related specifics of Level-1 
data, down to minute details of satellite detectors and their performance. At the same time, 
some ideas put forth by these researchers could be applied to Level-2 and Level-3 
imagery. Yet no attempts have been made to develop an algorithm dealing with stripes in 
Level-2 or Level-3 imagery. A careful examination of stripes in Level-3 imagery has shown 
that these stripes are often broad and diffuse (poorly defined) compared with stripes in 
Level-1 imagery and Level-2 imagery. Also, owing to image georegistration procedure, 
stripes in Level-3 imagery may have arbitrary orientation and may be curvilinear. Dealing 

http://cimss.ssec.wisc.edu/imapp/destripe.shtml


NOAA  
  BOASNRA 

Algorithm Theoretical Basis Document 
  Page 21 of 59 

 
 

 

with curvilinear stripes of arbitrary orientation is a formidable problem of pattern recognition 
and image processing. We were unaware on any successful attempt at solving this 
problem. Therefore we focused our efforts on developing an approach suitable for Level-2 
imagery since dealing with stripes in Level-2 imagery offers critical advantages vs. Level-3 
imagery.  
 
We developed a relatively simple stripe noise reduction algorithm (SNRA hereafter; see the 
SNRA flowchart in Fig. 2.3-2) for Level-2 imagery.  

 
Fig. 2.3-2. Flowchart of the SNRA algorithm. 

 
The SNRA takes advantage of a few properties of stripes in Level-2 imagery, namely: 

(1) Stripes have the same orientation, being always horizontal; 
(2) Stripes are always straight; 
(3) Stripes are relatively narrow, typically two pixels wide; 
(4) Stripe width is fairly constant along the same stripe; 
(5) Stripe spacing is often constant within the same image. 

At the same time, the MODIS stripe patterns have two properties that complicate the 
situation, namely: 

(1) Stripe spacing may vary within the same image; 
(2) Stripe width may vary from one stripe to another. 

 
The SNRA also takes advantage of the BOA front detection algorithm. It was noticed that 
the BOA works as stripe enhancer since stripes are treated by the contextual adaptive 
shape-preserving median filter (CASPMF) as the so-called roof edges or ridges. These 
features are considered as just another type of fronts in addition to the common stepwise 
(or ramp-like) fronts.  In other words, the BOA brings out stripes in MODIS data, thereby 
facilitating stripe noise reduction. Therefore the SNRA runs right after the BOA. Both 
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algorithms are implemented together as a single computer code and for all practical means 
and purposes can be considered as a single algorithm, the BOASNRA.  
 
Since stripes in Level-2 imagery are straight and horizontal, it is natural to use one-
dimensional median filter running normally to the stripes that is vertically. Since stripes are 
narrow (typically just two pixels wide), they can be reduced (if not completely eliminated) by 
iterative median filter with the window height WH, which satisfies the following condition: 
WH > SW*2, where SW is stripe width. At the same time, WH should be significantly less 
than stripe spacing SS, otherwise the window would span two stripes at once, which is not 
acceptable. Therefore, WH should meet the following condition: WH < SS – SW. As a 
result, WH should meet the double restriction: SW*2 < WH < SS-SW. Remember also that 
the median filter window height should be an odd number. From our extensive experience 
with MODIS images and stripe patterns, typical values of the above parameters are: SW=2 
and SS=8 to 10. These values result in the following double condition for WH: 4 < WH < 6 
to 8. Thus WH should be either 5 or 7. We have chosen the least value out of these two, 5. 
The reason for choosing the minimum acceptable value of the window height is dictated by 
our goal of making the algorithm (SNRA) minimally invasive. In other words, we made sure 
that our median filter is the least smoothing one since low-frequency smoothing is 
considered highly detrimental to the output product quality. In the same vein, we selected 
the minimum value for the 2D median filter’s width, which is 3. As a result, we settled on an 
anisotropic 2D median filter with the window width of 3 and window height of 5.       
 
The 2D 3x5 median filter slides over the image horizontally and vertically. After each pass 
(iteration), a distance DIST2 between the output image and input image is computed as an 
integrated pixel-based squared difference between respective matrices. This parameter 
(DIST2) is a quantitative measure of improvement thanks to the median filter. The process 
iterates until convergence or until a certain threshold is reached or until a certain number of 
iterations. In one dimension, convergence of median filter is guaranteed (Gallagher and 
Wise, 1981). In two dimensions, there is no theoretical guarantee of convergence. 
Pathological cases can be constructed where median filter oscillates indefinitely between 
two states (images). Practically, two-dimensional filter always converges, although the 
convergence rate might be rather slow depending on circumstances. To prevent a drawn-
out iteration process with no substantial improvement in the output quality, we set the 
maximum number of iterations at 300. This is a fairly arbitrary value. In practice, even 10 to 
20 iterations are enough to exhaust median filter. Any further improvement is not 
significant. 
 
The SNRA is applied to gradient magnitude and gradient direction independently (see the 
BOASNRA flowchart in Fig. 2.1-1 and SNRA flowchart in Fig. 2.3-2). Certain improvements 
are envisioned for future SNRA developments, particularly regarding gradient direction. 
These future upgrades are outlined in section 3.2 (“Potential Improvements”). 
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Cloud masking and cloud mask dilation 
The cloud flagging is done as part of the generation of the Chl product.  In the SeaDAS's 
l2gen function (NASA's ocean color processing software), L2_Flags (level 2 flags) is a 
standard output included in the Level-2 HDF file and one of the flags representing clouds. 
The mask dilation’s purpose is to ensure cloud edges are masked in addition to the clouds. 
This step is based on the mathematical morphology approach by Haralick et al. (1987). 

 
Azimuth correction 
During this step, the gradient direction is corrected to true north. The azimuth correction is 
an optional step. 

2.4.  Algorithm Output  

The BOASNRA output consists of two major products, which are fields of gradient 
magnitude (GRAD_MAG) and gradient direction (GRAD_DIR), accompanied by auxiliary 
products, which are Cartesian components of the gradient vector, namely X-component 
and Y-component.  

2.5.  Performance Estimates  

Introduction 
The BOASNRA performance has been estimated using a large test data set (TDS 
hereafter). The TDS consists of all available MODIS Aqua Ocean Color data over a 2-
month period from April 1, 2012 through May 31, 2012. These data are archived at the 
NOAA's Comprehensive Large Array-data Stewardship System (CLASS, 
www.class.noaa.gov ) maintained by the NODC. Total number of data files that comprise 
TDS is 3,499. All data are archived as HDF files. Total volume of TDS is 154 GB. 
The TDS has been processed with the BOASNRA C++ code on a dedicated platform, 
Lenovo IdeaCentre K330-77472KU desktop, with the following specifications: Intel Pentium 
processor G630 with 2 processing cores, 1333MHz system bus, 3MB cache and 2.7GHz 
processor speed; 6GB DDR3 SDRAM; and 1TB Serial ATA 7200 rpm hard drive. The 
BOASNRA C++ code was run under Ubuntu, a Linux-type operating system. 
 
The processing of 3,499 HDF data files has taken approximately 70 hours, or 
approximately 1 min. per data file. The most computer-intensive part of the algorithm is 
iterative two-dimensional median filter. There are several parameters of the median filter 
that determine performance of the entire algorithm. These parameters are width W and 
height H of the median filter, threshold TH used to stop iterations, and the maximum 
allowable number of iterations NITER. Parameters W and H are fixed: W=3 and H=5. 
Threshold TH is defined in relative terms. For example, TH can be defined for the mean 
absolute difference (or mean squared difference) between two consecutive iterations 
divided over variance of the image. Median filters are known to converge, and they are 
known to converge fast. For one-dimensional median filters, convergence to a locally-

http://www.class.noaa.gov/
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monotonous root signal is guaranteed, with convergence rate established: Any series of N 
elements processed with median filter converges after no more than (N-2)/2 iterations 
(Gallagher and Wise, 1981). The (N-2/2) is the upper bound for converge rate. In practice, 
median filters converge many times faster than (N-2/2).  
 
However, the BOASNRA uses two-dimensional median filters. For two-dimensional median 
filters, convergence is not theoretically guaranteed. In some extremely rare (“pathological”) 
cases, two-dimensional median filter might oscillate indefinitely between two stable modes. 
To prevent this from happening, the algorithm has a circuit breaker that stops iterations 
after a certain number of iterations, NITER. Normally, the process stops when difference 
between two consecutive iterations becomes less than TH. Otherwise, the process stops 
after NITER iterations. Experiments with median filters have shown that the size of the filter 
(“window size”) is not critically important for performance as long as this size is relatively 
small. In our case, the median filter operates with a sliding 3x5 window, which means that 
every step involves sorting a data set of 15 real numbers within this window. In fact, the 
algorithm implements a median finder function that does not require sorting of the window 
subset. This function, albeit not crucially important, provides some performance 
improvement compared with standard median finders that use complete sort of window 
subset, for example bubble sort function.  
 
Numerical experiments with NTER were conducted by varying it widely. The total CPU time 
changed little with NITER ranging from 10 to 200. The threshold TH affects performance 
less than NITER. Overall, the algorithm is quite robust. Its performance changes little when 
two free parameters (TH and NITER) vary within realistic ranges. 
 
Since the BOASNRA consists of two algorithms (BOA+SNRA) that perform different 
functions, the performance of these algorithms can be assessed separately. The BOA is a 
front detector, while the SNRA performs stripe noise reduction. However, in practice these 
two algorithms are merged into a single algorithm (BOASNRA) implemented as a single 
code. Moreover, whereas the BOA performance – in principle – can still be assessed 
separately by outputting BOA results prior to passing them to SNRA, the SNRA 
performance can only be assessed in a context of the entire BOASNRA since the SNRA 
operates using the BOA output as its input. 
 
Qualitative assessment of performance with regard to front detection 
The BOA performance was assessed quantitatively and qualitatively in a synthetic image 
generation (SIG) environment; it was shown that the BOA is robust and invariant to scale, 
rotation, and background (Belkin and O’Reilly, 2009). A large-scale validation and 
qualitative assessment effort was undertaken in 2007-2009, when the BOA was run over 
>6,000 images of Chl and SST obtained for the U.S. Northeast in 2002-2011. Climatology 
of Chl and SST fronts for the U.S. Northeast was compiled based on 10 years of MODIS 
Aqua data. The main reason for the parallel usage of Chl and SST frontal climatologies was 
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two-fold: (1) Chl fronts are excellent markers of SST fronts, especially in summer when 
many SST fronts all but disappear after being obliterated by spatially uniform surface 
warming; (2) Another, independent climatology of SST fronts was previously obtained using 
the Cayula-Cornillon algorithm (CCA) based on a completely different approach called 
histogram method (Belkin, Cornillon, and Sherman, 2009). The BOA-generated Chl frontal 
maps were compared with the collocated CCA-generated maps of SST fronts for the same 
months. The comparison was made in the following areas: South Atlantic Bight, Mid-
Atlantic Bight, Nantucket Shoals, Georges Bank, Gulf of Maine, and Nova Scotian Shelf. 
The BOA- and CCA-generated maps compare quite favorably. All fronts identified by CCA 
have been identified by BOA. At the same time, the BOA-generated maps revealed many 
small-scale and meso-scale fronts that have not been previously reported. The most 
conspicuous examples are newly-identified fronts over the Nantucket Shoals and Georges 
Bank. These fronts persist year-round, which can be explained by topographic steering. 
Spatial gradients associated with these features are quite strong. The bathymetrically-
induced stability combined with strong spatial gradients renders these fronts important to 
fisheries and navigation. Results of this investigation are reported in detail by Belkin, Hyde, 
and O’Reilly (2012). 
   
Quantitative assessment of performance with regard to stripe noise reduction 
The stripe-reduction performance of the BOASNRA was assessed by running it over the 
above-described Test Data Set (TDS) of 3,499 images of ocean color. The Stripe Noise 
Reduction Algorithm (SNRA) has been developed to reduce stripe noise in MODIS Aqua 
Chl-a Level 2 imagery. The SNRA takes advantage of certain features of L2 data: 

(1) Each image consists of scans obtained normally to flight direction; 
(2) Each scan is represented by one row in data file; 
(3) Stripes are aligned in along-scan direction (no cross-scan stripes); 
(4) Stripes are horizontal in data image (array); 
(5) Stripes are straight (unlike stripes in L3 data, after georegistration); 
(6) Stripes are equidistant (at least, the great majority of stripes). 
(7) After BOA, stripes in GM and GD are narrow, typically 2 pixels across. 

 
The SNRA is designed to be applied to gradient magnitude (GM) and gradient direction 
(GD) generated by the BOA front detection algorithm. By applying SNRA to BOA products, 
advantage is taken of the BOA thanks to the observed fact that stripes are better defined in 
GM and GD after front detection by BOA compared to the same stripes in original Chl-a 
images. Particularly and practically, “better defined” means that stripes are narrow. This 
has profound implications for SNRA because it means that such stripes can be reduced by 
median filters running normally to the stripes, with median filter window height MFWH 
larger than twice stripe width SW yet smaller than stripe spacing SS (= stripe-to-stripe 
distance). These conditions can be written as a double inequality:  2*SW < MFWH < SS.   
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Performance of SNRA can be measured using vastly different metrics that have been 
developed for digital filters. Many of these metrics have been developed specifically for 
median filters, and  in most cases their authors were mostly concerned with removal of 
impulse noise , which is an important problem in satellite image data processing  (Al-Amri 
et al., 2010; Bovik, 1987; Celebi et al., 2007; Curran and Dungan, 1989; Juhola et al., 1991; 
Kober et al., 2003; Konnik, 2009; Kumar et al., 2007; Liu et al., 2006; Mao and Gan, 1993; 
Melange et al., 2011; Nichol and Vohora, 2004; Olsen, 1993; Russell and Sinha, 2001; 
Sahasrabudhe et al., 1999; Tai and Yang, 2008; Wang and Bovik, 2002; Williamson et al., 
1993; Wilson et al., 1997; Wu and Tang, 2011; Yang et al., 2009; Yang and Lai, 1996; 
Zhou et al., 2002). Some metrics were developed for evaluating destriping algorithms 
designed for L1 imagery. 
 
Of many available metrics, we have chosen two: mean absolutely estimate (MAE) and 
mean squared estimate (MSE). The below pseudo-code describes the modified BOASNRA 
and applies to a single run of the modified BOASNRA code. In other words, the pseudo-
code describes the processing of a single data file. 
 
Pseudo-code of the Modified BOASNRA (= BOASNRA-TEDMF) 
TEDMF = TEsting and Documenting (performance of) Median Filter. 
DATA = Read MODIS Aqua OC L2 data (one data file); Make IMAGE(DATA) 
Run the BOA part of the BOASNRA code: 
Comment: The BOA part generates GRAD_MAG (=GM) and GRAD_DIR (=GD) files. 
Make IMAGE(GM) and IMAGE(GD) 
Calculate Variance of Image (in both GM and GD): 
Use function Stripe Noise Estimator (below) to calculate Mean Absolute Estimate (MAE) 
and Mean Squared Estimate (MSE) of variance of image, using sliding windows: 
[MAE3, MSE3] = SNE(image, 3); [MAE5, MSE5] = SNE(image, 5) 
[MAE7, MSE7] = SNE(image, 7); [MAE9, MSE9] = SNE(image, 9) 
Run the SNRA part of the BOASNRA: 
Iterate MEDIAN FILTER until convergence (diff<threshold) or until 30 iterations.  
Make IMAGE(GM) and IMAGE(GD). 
Calculate Variance of Image (in both GM and GD): 
[MAE3, MSE3] = SNE(image, 3); [MAE5, MSE5] = SNE(image, 5); 
[MAE7, MSE7] = SNE(image, 7); [MAE9, MSE9] = SNE(image, 9); 
Calculate number of iterations until convergence (=NITER). 
Calculate number of pixels modified by SNRA (=NPixMod). 
Calculate MAE and MSE of difference between the same images before and after SNRA: 
MAE=SUM(ABS(A(i,j)-B(i,j)))/NValPix; % NValPix=number of valid pixels 
MSE=SUM (A(i,j)-B(i,j))^2)/NValPix; 
A is image before SNRA; B is the same image after SNRA.  
Both MAE and MSE are calculated for images of GM and GD, before and after SNRA. 
============== end of pseudo-code ================================== 
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The next pseudo-code describes the Stripe Noise Estimator, which runs across rows of 
GM and GD and calculates pixel-based MAE and MSE: 
 
Pseudo-code of the Stripe Noise Estimator: 
Window Height = K (window is vertical, sliding along columns); SN=Stripe Noise;  
SN1 – for MAE (Mean Absolute Estimate); SN2 – for MSE (Mean Squared Estimate) 
SN1(1:NROWS,1NCOLS)=0; SN2(1:NROWS,1NCOLS)=0; 
SN1ROW(1:NCOLS)=0; SN2ROW(1:NCOLS)=0; 
for COL=1:NCOLS 
 StartRow = (K+1)/2; EndRow = NROWS-(K-1)/2; 
 for ROW=StartRow : EndRow 
  Row1=ROW-(K-1)/2; Row2=ROW+(K-1)/2; 
  WINDOW=A(Row1:Row2,COL) % K-POINT WINDOW ALONG COLUMN  
  AVG=MEAN(WINDOW) % AVG = AVERAGE 
  for i=1:K  D1(i)=ABS(WINDOW(i)-AVG); D2(i)=D1(i)^2 ; end 
  SN1(ROW,COL)=MEAN(D1); SN2(ROW,COL)=MEAN(D2); 
 end; 
 SN1ROW(COL)=MEAN(SN1(:, COL)); SN2ROW(COL)=MEAN(SN2(:, COL)); 
end 
MAE=MEAN(SN1ROW(:));  MSE=MEAN(SN2ROW(:)) % AVERAGE ALL COLUMNS 
============== end of pseudo-code ================================== 
 
The test run using 3,499 data files has shown that the BOASNRA C++ code is robust. All 
data files were processed without exception. The iterative median filter convergence was 
achieved reasonably fast given the size of data files (images). Each image is an array of 
2030 rows x 1354 columns = 2,748,620 pixels. On the average, the convergence over 
gradient magnitude was achieved after about 15 iterations (Figure 2.5-1). The histogram in 

this figure shows that in about 80% of all 
cases convergence required less than 
30 iterations. In about 20% of all cases 
convergence was not achieved after 30 
iterations and was terminated. Yet 
statistics of residuals shows that any 
incremental improvements after 30 
iterations are very small. 
 
Figure 2.5-1. Number of iterations until 
convergence for gradient magnitude 
(mean, 14.67 iterations). The total 
number of images processed is 3,445. 
X, number of iterations; Y, number of 
images.     
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2.6.  Practical Considerations 

2.6.1.  Numerical Computation Considerations 

The BOASNRA is computationally simple. The only computationally intensive operations 
are: 

(1) the contextual adaptive shape-preserving median filter (CASPMF) used in the BOA; 
(2) the anisotropic 2D median filter used in the SNRA.  

Both median filters are applied repeatedly (iteratively) until convergence.  The convergence 
rate of the CASPMF is relatively fast notwithstanding the structural complexity of the 
CASPMF. Indeed, the CASPMF is a two-layer annular filter, which consists of a 3x3 
median filter operating within a larger 5x5 median filter. The larger 5x5 median filter slides 
across the image while the 3x3 median filter slides across the ambient 5x5 window. The 
convergence rate of the SNRA is much slower despite its simplicity; however the most 
substantial improvements (stripe noise reduction) are achieved after the first 10-20 
iterations. Nonetheless, our experience has shown that iterative median filters are not 
computationally demanding, therefore the SNRA is allowed to iterate until convergence or 
until 300 iterations (whichever comes first). The relatively low computational intensity of the 
BOASNRA is at least partly accounted for by the high efficiency of numerical sorting 
implemented in the median filters and also because of the relative small window sizes – 
3x3 and 5x5 and 3x5 – used in both median filters.   
 

2.6.2.  Programming and Procedural Considerations 

The BOASNRA algorithm uses two-dimensional iterative median filters that pass over the 
same image until convergence. One-dimensional media filters are known to always 
convergence, to the so-called root signal; moreover, the nature of the root signal is known: 
this signal is locally monotonous (Gallagher and Wise, 1981). Two-dimensional median 
filters (2DMF) do not necessarily converge: There is no guarantee of convergence of 
2DMF. In some pathological cases, 2DMF may exhibit an oscillatory behavior by switching 
back and forth between two stable modes. Even though the probability of encountering 
such pathological cases in real satellite image is likely infinitesimal (such oscillations have 
not been observed after running the BOASNRA over several thousand of images), we 
hard-coded a circuit breaker that terminates the iteration process in the SNRA after 300 
iterations (see the SNRA flowchart in Fig. 2.3-2). This is a safety precaution that does not 
affect the quality of the output product. The threshold number (300) far exceeds the typical 
number of iterations required to achieve substantial improvement of image quality. Our 
practical experience with MODIS Aqua images shows that image quality improves most 
significantly after the first few iterations (10 to 20 at most) and that all subsequent 
improvements are getting progressively less pronounced as the iteration process is going 
on.   
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2.6.3.  Quality Assessment and Diagnostics 
The quality of output frontal maps can be assessed against in situ data and other satellite 
products (collocated and synchronous). An experienced oceanographer could qualitatively 
evaluate features displayed in the output products and point out some features that could 
be artifacts. At the same time, the quality of SNRA can be quantitatively assessed by using 
three parameters – DIST2, NITER_C, and NPIX – that characterize the improvement 
achieved owing to SNRA and also the computational cost of SNRA. The best way to 
monitor these parameters is to tabulate and display DIST2, NITER_C, and NPIX. 
Accumulation of these data after running the BOASNRA over several thousand images 
would allow robust statistics to be computed.  

2.6.4.  Exception Handling 
The iterative median filter is known to converge fast. In 1D, median filter always converges. 
In 2D – and this is our case – there is no theoretical guarantee of convergence. In some 
pathological cases (=exceptions), iterative median filter applied to an image would oscillate 
indefinitely between two states. To prevent this from ever happening, a circuit breaker is 
hard-coded in the SNRA. This circuit breaker stops the iterative median filter automatically 
after 300 iterations (see the SNRA flowchart in Fig. 2.3-2). Our experience has shown that 
any improvement (stripe noise reduction) achieved after 300 iterations is insignificant. 
Therefore, forcing termination of the iteration process does not degrade the output product. 

2.7.  Validation 
2.7.1. Introduction 
Testing and validation of the BOASNRA has been done in several steps. First, separate 
blocks of the BOASNRA have been tested in isolation.  After testing each block individually, 
the entire BOASNRA has been tested and validated as a whole. The most important block, 
the Belkin-O’Reilly Algorithm (BOA), was initially tested in the Synthetic Image Generation 
(SIG) environment, and later validated with thousands of real satellite images (Belkin, 
Hyde, and O’Reilly, 2012) and with in situ oceanographic data (Belkin, Melrose, and Hare, 
2012). The BOASNRA has been tested and validated with 3,500 MODIS Aqua Ocean 
Color Level-2 images obtained via the NOAA CLASS system (www.class.noaa.gov). The 
BOA has also been validated with MODIS Aqua Ocean Color Level-3 data obtained from 
the NASA Goddard Space Flight Center (http://oceancolor.gsfc.nasa.gov/cgi/l3). Each of 
these validation sub-projects is described below.   
 
2.7.2. Testing and validation of contextual median filter on model (synthetic) images 
Performance of the contextual MF was evaluated on model (synthetic) images (Figs. 2.7-1 
through 2.7-3) that capture main spatial features of frontal zones on a variety of scales: 
1. Large-scale water mass fronts, e.g. Gulf Stream (100–1000 km). 
2. Meso-scale fronts around eddies, especially rings (50–100 km). 

http://www.class.noaa.gov/
http://oceancolor.gsfc.nasa.gov/cgi/l3
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3. Meso-to-small-scale fronts around spin-off eddies (shingles) that develop on large-scale 
and meso-scale fronts (10–50 km). 
4. Chl enhancement at fronts (Chl ridges). 
5. Local Chl blooms (Chl peaks). 

 
 
Fig. 2.7-1. Median filtering of the model Gulf Stream and its rings (Belkin and O’Reilly, 
2009). The right panel shows two types of spikes and the effect of median filter. 
 
The above features were modeled against spatially varying fields to test the filter's 
insensitivity to the background. Testing the filter on the widely meandering Gulf Stream (GS 
hereafter), round-shaped rings and spiral eddies/ridges confirms the filter's rotational 
invariance. The GS north and south edge (“wall”) have been intentionally corrupted by 
adding 1-point spikes and 3-point spikes that alternate along each edge. To test the 
algorithm's insensitivity to spike rotation/orientation, meridionally-oriented spikes were 
added to the north wall, while zonally-oriented spikes were added to the south wall. Two 
kinds of horizontal spikes in xy-plane were used for testing:  

(1) Spikes created by swapping adjacent pixels. After these spikes are added, the GS 
edges look frayed. 

(2) Spikes created by spreading the GS warm pixels outward. After these spikes are 
added, the GS edges look rugged. 

The swap and spread spikes make the model Gulf Stream edges mimic small- and meso-
scale shingle-like meanders commonly observed along edges of the real Gulf Stream and 
other large-scale fronts (Fig. 2.7-1). Rings (Fig. 2.7-1) and spiral eddies-ridges (Fig. 2.7-2) 
vary in size to test the filter's scale invariance and its insensitivity to feature dilation (scaling 
transformation). The spiral eddies-ridges also vary in structure: narrow ridges (left column) 
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are only one pixel across, whereas wide ridges (right column) are three pixels across and 
have a sharp crest. Chl peaks (blobs) are of three sizes (Fig. 2.7-3): 1-pointers are spikes 
assumed noise that must be removed, whereas sharp 3-pointers and 5-pointers defined on 
3×3 and 5×5 compacts respectively need to be preserved intact. Since the 1-pointers are 
along z-axis, they are called vertical spikes. 
 

 
Fig. 2.7-2. Contextual median filtering of ridges or “roof edges” is robust and invariant to 
the varying background, scale and orientation of these features (Belkin and O’Reilly, 2009). 
 
2.7.3. Validation of front detection algorithm with real satellite images 
The BOA was validated with >6,000 images of Chl and SST obtained for the U.S. Northeast 
in 2002-2011. Climatology of Chl and SST fronts for the U.S. Northeast was compiled 
based on 10 years of MODIS Aqua data (Belkin, Hyde, and O’Reilly, 2012). These 
climatologies have been compared to identify collocated features (fronts) observed 
synchronously. This comparison presents a powerful instrument for cross-validation of the 
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front detection algorithm (BOA) since Chl fronts are markers of SST fronts. We also 
validated the BOA by comparing the SST climatology generated by the BOA with a regional 
climatology of SST fronts generated by the Cayula-Cornillon algorithm (Ullman and 
Cornillon, 1999, 2001; Belkin, Cornillon, and Sherman, 2009). The main reason for the 
parallel usage of Chl and SST frontal climatologies was two-fold: (1) Chl fronts are 
excellent markers of SST fronts, especially in summer when many SST fronts all but 
disappear after being obliterated by spatially uniform surface warming; (2) Another, 
independent climatology of SST fronts was previously obtained using the Cayula-Cornillon 
algorithm (CCA) based on a completely different approach called histogram method 
(Belkin, Cornillon, and Sherman, 2009). The BOA-generated Chl frontal maps were 
compared with the collocated CCA-generated maps of SST fronts for the same months. 
The comparison was made in the following areas: South Atlantic Bight, Mid-Atlantic Bight, 
Nantucket Shoals, Georges Bank, Gulf of Maine, and Nova Scotian Shelf. The BOA- and 
CCA-generated maps compare quite favorably. All fronts identified by CCA have been 
identified by BOA. At the same time, the BOA-generated maps revealed many small-scale 
and meso-scale fronts that have not been previously reported. The most conspicuous 
examples are newly-identified fronts over the Nantucket Shoals and Georges Bank. These 
fronts persist year-round, which can be explained by topographic steering. Spatial gradients 
associated with these features are quite strong. The bathymetrically-induced stability 
combined with strong spatial gradients renders these fronts important to fisheries and 
navigation. Results of this investigation are reported in detail by Belkin, Hyde, and O’Reilly 
(2012). 

 
Fig. 2.7-3. Contextual median filtering of spikes and blobs (Belkin and O’Reilly, 2009). 
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2.7.4. Testing and validation of BOASNRA with instant real satellite images 
Screening Test Data Set. The BOASNRA was tested and validated using the Test Data 
Set (TDS) described in section 2.5. The TDS includes all available MODIS Aqua Ocean 
Color data from April 1 through May 31, 2012. These data are archived as HDF files at the 
NOAA's Comprehensive Large Array-data Stewardship System (CLASS, 
www.class.noaa.gov ) maintained by the NODC. The TDS consists of 3,499 files with total 
volume of >500 GB. The TDS was processed with the BOASNRA C++ code on a dedicated 
platform described in section 2.5. Since most images are heavily contaminated by clouds, 
fog, and haze, the TDS was screened to select a subset of ~300 relatively high-quality 
images (with less clouds); yet another screening was performed, resulting in ~30 best 
images selected for demonstration purposes as they illustrate various types of fronts 
observed and successfully detected in geographically and physically diverse regions.  
Visualization. Special care was taken in developing customized color scales for Chl, 
gradient magnitude GM and gradient direction GD. This is not an easy task since each 
scale is required to be stable since dynamic scaling is not allowed. Additionally, a color 
scale for gradient direction is required to be continuous to avoid the 0°/360° singularity. In 
that, direction is radically different from magnitude because direction is a periodic physical 
quantity, whereas magnitude is not. In all three cases (Chl, GM, and GD), the standard 
RGB color wheel was implemented into three different color scales, two of them (for Chl 
and GM) being non-linear (quasi-logarithmic).       
Cloudiness and its effect on validation. Visual inspection of the entire TDS (3,499 
images) has made apparent vast differences in cloudiness between various regions, which 
severely impacts front detection. Some regions feature cloud-free conditions (e.g., Gulf of 
California and western tropical Atlantic off Brazil), whereas other regions are mostly cloudy 
or foggy (e.g., Gulf of Alaska, Bering Sea, and North Atlantic). It should be noted that any 
conclusions in this document are based on a two-month data set (April-May) from one year 
(2012) and therefore are not necessarily representative of other seasons and years. It is 
well known that cloudiness in just about any geographic region exhibits strong seasonal 
variability. Also, interannual variations of cloudiness in a particular region may be quite 
significant; therefore no conclusions are made here about climatological conditions in the 
regions discussed below. Nonetheless, the above-noted geographic differences in visibility 
of ocean surface from space are quite dramatic and should be taken into account in any 
future validation efforts. 
Regional ranking based on cloudiness. Based on the visual inspection of TDS, various 
geographical regions are ranked below from the least cloudy to the most cloudy as follows: 

1. Gulf of California (including southern approaches west of Mexico) 
2. Western Tropical Atlantic off Brazil (the entire broad coastal zone) 
3. Gulf of Mexico 
4. Mediterranean Sea (especially the western and central parts) 
5. Eastern Tropical Pacific (west of Central America and north of the equator) 
6. Eastern Tropical Atlantic (off NW Africa) 

http://www.class.noaa.gov/
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7. US West Coast (with strong north-south gradient of cloud frequency) 
8. US Southeast (South Atlantic Bight) 
9. US Northeast (Mid-Atlantic Bight, Georges Bank and Gulf of Maine) 
10.  Scotian Shelf and Gulf of St. Lawrence 
11.  Hawaii 
12.  Great Lakes 
13.  Gulf of Alaska 
14.  Bering Sea 
15.  Beaufort Sea 

Ranking of frontal regions. Any validation effort requires presence of strong (with large 
cross-frontal steps of properties), intense (high-gradient), and persistent (high-frequency) 
fronts in a given area. Even though fronts are ubiquitous and can be found in any area of 
the World Ocean in any season, there are regions with strong, intense, and persistent 
fronts that consistently show up in satellite imagery. The best examples of such regions are 
the US Southeast and US Northeast, where the year-round Gulf Stream front features 
sharp gradients of properties. Other regions might be void of strong, intense, and persistent 
fronts, for example the western tropical Atlantic off Brazil and waters around the Hawaii. 
Based on the above-noted key parameters of fronts, namely their strength, intensity and 
persistence, a short list of the “best” frontal regions is as follows: 

1. US Northeast (Gulf Stream, Shelf-Slope Front) 
2. US Southeast (Gulf Stream) 
3. Gulf of Mexico (Loop Current Front, Shelf-Slope Front, Mid-Shelf Front) 
4. US West Coast (especially off California) 
5. Gulf of California 

Results: Several examples below illustrate the BOASNRA performance across the wide 
spectrum of ocean fronts created by various physical and biological processes that take 
place in vastly different oceanographic regions (details in Belkin I.M. et al., Destriping of 
MODIS Aqua Level 2 imagery, in preparation).  
Results: Gulf of Mexico. The BOASNRA performs well on real images as illustrated by 
Fig. 2.7-4. The first image shows Chl in the Gulf of Mexico. Owing to the vast export of 
nutrients by the Mississippi River, the near-shore areas feature elevated levels of Chl 
(although ocean color in these areas is also affected by suspended sediments (silt) and 
yellow substance (“gelbstoff’ in German) brought by rivers). Nonetheless, a major Chl front 
is evident at the boundary of the Mississippi Plume. The front transpires in the gradient 
magnitude (GM) map as well as in the gradient direction (GD) map. The SNRA works well 
by reducing stripe noise in both GM and GD. Moreover, the SNRA does not reduce the 
peak values of GM at the plume front, which is important; actually, the SNRA helps define 
this front better. Still, some leftover stripes are evident northeast of the Mississippi Delta. 
The reason for this is the width of these stripes: They are wider than the median filter 
window in SNRA; therefore they won’t be substantially reduced by SNRA. Fortunately, this 
is a rare case. In the great majority of cases, stripes are narrow (1-2 pixels across), so they 



NOAA  
  BOASNRA 

Algorithm Theoretical Basis Document 
  Page 35 of 59 

 
 

 

are almost completely eliminated by SNRA. Numerical experiments with SNRA have shown 
that three iterations of a 2D median filter are enough to substantially reduce striping noise 
and completely eliminate thin stripes. Another interesting benefit of SNRA manifests in the 
GD maps where hitherto unknown series of meso-scale quasi-parallel streaks (fronts) have 
been revealed in some images. These streaks (fronts) feature relatively weak gradients; 
therefore they are not noticeable in GM maps. These newly-identified patterns deserve a 
special study. 

   
 

  

Fig. 2.7-4. Validation of BOASNRA with instant satellite images. (A), Chl concentration in 
the northern part of the Gulf of Mexico off the Mississippi River Delta. B and C, maps of 
gradient magnitude before and after SNRA, respectively. Evidently, the SNRA substantially 
improves the gradient magnitude map quality: the striping pattern is less noticeable and the 
Mississippi River Plume Front is much better defined in C vs. B. The same is true with 
regard to the maps of gradient direction in D vs. E, respectively.  

A B C 

front front 

D E 

front 

front 

front 
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Results: Gulf Stream fronts in the South Atlantic Bight. Fig. 2.7-5 below shows the Gulf 
Stream fronts in the South Atlantic Bight (SAB), off the U.S. Southeast coast. The 
BOASNRA-generated map (right) reveals fine multi-frontal structure of the Gulf Stream as it 
flows north along the shelf break. It also reveals strong fronts over the SAB shelf. 

 
 

Fig. 2.7-5. Validation of BOASNRA with instant satellite images (cont’d). The leftmost 
image shows Chl concentration in the South Atlantic Bight off the U.S. Southeast coast. 
The next two images (center and right) are maps of gradient magnitude before and after 
SNRA, respectively. Evidently, the SNRA substantially improves the gradient magnitude 
map quality: the striping pattern is less noticeable and the Gulf Stream fronts are much 
better defined after SNRA.  
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Results: Mid-Atlantic Bight. Fig. 2.7-6 shows the Gulf Stream front and warm ring in the 
Mid-Atlantic Bight off the U.S. Northeast coast. The BOASNRA significantly improves 
definition (visibility) of various fronts (e.g., compare bottom right vs. bottom left images).  

 

 
Fig. 2.7-6. Validation of BOASNRA with instant satellite images (cont’d). Top: Chl 
concentration. Bottom: GradMag before and after SNRA, respectively. The SNRA 
substantially improves the gradient magnitude map quality: the striping pattern is less 
noticeable and various fronts are much better defined after SNRA. 



NOAA  
  BOASNRA 

Algorithm Theoretical Basis Document 
  Page 38 of 59 

 
 

 

2.7.5. Validation of front detection algorithm with monthly satellite imagery  
Introduction. Generally speaking, any front detector should be applied to instant satellite 
images, not to averaged data, for any averaging tends to smooth fronts. Hence, any 
climatology of fronts should be generated by (1) running front detector over instant satellite 
images and then (2) averaging (or compositing) frontal maps obtained during step 1. This 
principle has been implemented, e.g., at the University of Rhode Island where the Cayula-
Cornillon algorithm was developed and used during a global survey of  World Ocean fronts 
(Belkin et al., 2009). Yet time-domain averaging (= temporal averaging) of satellite imagery 
of the World Ocean has at least one major advantage, A1: It greatly reduces contamination 
by clouds. The reason is simple: Clouds move constantly, and even slow-moving clouds 
move much faster than fronts and eddies in the ocean. There are at least two other 
advantages of temporal averaging, namely, A2: It eliminates speckle noise, and A3: In case 
of MODIS Aqua, it greatly reduces stripe noise. In both cases, the noise 
reduction/elimination is achieved owing to the stochastic nature of speckle noise and stripe 
noise. Thus, the combination of three advantages, A1+A2+A3, makes temporal averaging 
attractive in satellite remote sensing and ocean front detection.  
 
Optimum time scale of temporal averaging. When temporal averaging is applied to 
ocean front detection, the most important question is this: What is the optimum time scale 
of temporal averaging? In front detection (and image processing in general) there is always 
a trade-off between noise reduction and feature preservation. By increasing time scale of 
temporal averaging, noise (both speckles and stripes) can be reduced dramatically to the 
point of elimination. Yet the time scale of temporal averaging cannot be increased infinitely 
without significant distortion of frontal pattern. Indeed, most fronts wax and wane on a 
variety of scales, the most important scale being seasonal. As the season progresses, such 
fronts emerge and disappear, or migrate back and forth, or change their strength and 
intensity (cross-frontal range and maximum gradient, respectively), and they often exhibit 
all three kinds of variability at the same time. Therefore the longest time scale of temporal 
averaging should be at least several times shorter than the length of a season. Even 
though seasons in the ocean might have different length depending strongly on location, 
the average season length is commonly assumed to be 3 months. Therefore the maximum 
time scale of temporal averaging should be close to 1 month. A visual inspection of bi-
monthly maps of Chl routinely made available by the NOAA CoastWatch provides ample 
empirical justification for the one-month cutoff. The next question to answer is: What is the 
minimum time scale of temporal averaging? The NASA Goddard Space Flight Center’s 
Ocean Color Web site (http://oceancolor.gsfc.nasa.gov/cgi/l3) has an archive of Chl maps 
generated for different time intervals, namely 1 day, 8 days and 1 month. Again, a careful 
visual inspection of all three data sets has shown that daily and 8-day maps are too 
contaminated by clouds, whereas monthly maps are often nearly cloud-free and reveal 
frontal patterns quite well. Therefore, based on the above visual inspections of daily, 
weekly, monthly and bi-monthly maps, the one-month time scale of temporal averaging was 
found to be optimum for front detector validation.   

http://oceancolor.gsfc.nasa.gov/cgi/l3
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Data. Monthly maps of Chl, January through December 2012 were made for all 9 frontal 
product CoastWatch areas (Table 1). These maps were extracted from respective monthly 
global fields (Level 3 data) with 4-km resolution downloaded from the NASA Goddard 
Space Flight Center’s Ocean Color Web site (http://oceancolor.gsfc.nasa.gov/cgi/l3). The main 
goal of this validation effort was to determine if front detection can be performed on monthly 
Chl maps, rather than instant images. It was necessary to cover as many physically and 
biologically diverse regions as possible because fronts exhibit tremendous spatial variability 
around the globe. Fortunately, the 9 frontal product CoastWatch regions cover a vast 
variety of diverse fronts. Taken together, these regions are quite representative of the 
entire World Ocean. The above-described data set covers all seasons but is limited to one 
particular year, 2012. The choice of a particular year is non-consequential since (1) the 
inter-annual variability of ocean fronts is approximately an order of magnitude smaller than 
the seasonal variability of the same fronts, and (2) the main focus here is on seasonal 
(hence 12 months) and spatial (hence 9 regions) variability of fronts. 
 

Table 1. Boundaries of Nine Frontal Product CoastWatch Regions* 
*Courtesy NOAA CoastWatch; prefix numbers added to facilitate sorting 

Region W. Lon E. Lon N. Lat S. Lat 
1_Northeast -82 -60 46 30 
2_Southeast -88 -72 37 22 
3_Caribbean -80 -60 30 8 
4_Gulf of Mexico -99 -79 31 17 
5_Great Lakes -93 -75 51 38 
6_West Coast -142 -112 51 29 
7_Eastern Tropical Pacific -142 -80 30 8 
8_Alaska -180 -126 64 50 
9_Hawaii -167 -147 29 10 

 
Results. Each region is represented by two maps: Chl and Chl Gradient Magnitude (GM). 
Even though maps of Chl Gradient Direction are always generated as a standard product, 
these maps are less informative here and therefore are not shown. For each region, a 
single month is chosen subjectively and shown as the “best” month based on the richness 
and clarity of the monthly regional frontal pattern. 
 
Overall, out of the 9 CoastWatch regions processed and presented here, 5 regions stand 
out: #1 Northeast, #2 Southeast, #4 Gulf of Mexico, #6 West Coast and #7 Eastern Tropical 
Pacific. These regions feature strong, robust fronts that are either persistent year-around 
(e.g., Gulf Stream) or seasonally persistent (e.g., Mid-Shelf Front and Shelf-Slope Front 
that are strong in winter and fall, respectively, becoming much weaker in other seasons). 
Region #3 Caribbean has few fronts except of numerous coastal fronts off Venezuela and 
Columbia. Region #5 Great Lakes features small-scale fronts that require high-resolution 

http://oceancolor.gsfc.nasa.gov/cgi/l3
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data for detection and mapping. Region #8 Alaska is extremely cloudy; yet strong fronts are 
visible along the Alaskan Coastal Current and Alaskan Stream. Region #9 Hawaii is the 
only region void of stable (quasi-stationary) fronts. 
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Region 1: Northeast 
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Region 2: Southeast 
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Region 3: Caribbean 
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Region 4: Gulf of Mexico 
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Region 5: Great Lakes 
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Region 6: West Coast
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Region 7: Equatorial Tropical Pacific 
 

 
 
 
 
 

 
 
 
 
 



NOAA  
  BOASNRA 

Algorithm Theoretical Basis Document 
  Page 48 of 59 

 
 

 

Region 8: Alaska 
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Region 9: Hawaii
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2.7.6. Validation of front detection algorithm with in situ data 
The in situ data set used to validate this front detection algorithm has been collected in the 
ECOMON cruises conducted by the Narragansett Laboratory, Northeast Fisheries Science 
Center, National Marine Fisheries Service. The regular seasonal ECOMON cruises 
covered a large part of the western North Atlantic area within the U.S. Exclusive Economic 
Zone, including the Gulf of Maine, Georges Bank, Nantucket Shoals, and Mid-Atlantic Bight 
down to Cape Hatteras (Fig. 2.7-5). This data set was acquired in 25 ECOMON cruises 
between August 2000 and February 2010. To our best knowledge, no other front detection 
algorithm has ever been tested on such a large in situ data set. During each cruise, up to 
20 environmental parameters have been recorded continuously underway, including SST, 
SSS, and fluorescence, the latter being a proxy for Chl concentration. Fronts in Chl, SST, 
and SSS are automatically detected in continuous underway data using the software 
package developed by I.M. Belkin for this purpose. An example of a well-defined front in 
underway ship-borne SST data is shown in Fig. 2.7-6. All in situ fronts are mapped, 
mutually compared, and quality controlled. After that, the in situ fronts are compared with 
collocated contemporaneous fronts detected by the front detection algorithm in MODIS 
Aqua imagery. Details of validation with the ECOMON data are to be published as a peer-
reviewed paper (Belkin, I.M., Melrose, C., Hare, J., 2012, Validation of a front detection 
algorithm with in situ underway data, in preparation).  

 
Fig. 2.7-5. ECOMON cruise station map. 

Source:  
http://nefsc.files.wordpress.co
m/2010/05/mapofstations_sm
all1.jpg  

http://nefsc.files.wordpress.com/2010/05/mapofstations_small1.jpg
http://nefsc.files.wordpress.com/2010/05/mapofstations_small1.jpg
http://nefsc.files.wordpress.com/2010/05/mapofstations_small1.jpg
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Fig. 2.7-6. Underway ship-borne SST transect across a front. 

R/V Albatross IV Cruise AL0005, 22 August 2000. Data: Jon Hare (NOAA). 
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3.  ASSUMPTIONS AND LIMITATIONS  

3.1.  Performance Assumptions 

The BOASNRA is designed with no explicit assumptions or models about the input. Yet two 
notes are warranted: 

(1) While designing the contextual adaptive shape-preserving median filter (CASPMF), 
which constitutes the BOA’s core, an assumption was made that all 2D extrema with 
a single pixel footprint have to be eliminated by the CASPMF since such extrema 
are considered to be impulse noise. No such assumption was made in the SNRA.  

(2) Even though iterative median filter always converges when applied to real satellite 
images (no oscillatory behavior has been observed so far), the SNRA does not 
make this assumption and stops the iteration process either after achieving complete 
convergence or after 300 iterations, whichever comes first (see the SNRA flowchart 
in Fig. 2.3-2). 

3.2.  Potential Improvements 

(1) Certain improvements in the output product quality and computational efficiency 
could be achieved by using recursive median filters as opposed to the standard 
(non-recursive) median filters. Recursive median filters have been shown to improve 
the quality of two-dimensional images (Qia, 1996; Stork, 2003). Currently, the 
BOASNRA uses non-recursive (standard) median filter. 
 

(2) The BOASNRA has been validated using satellite climatology of Chl and SST fronts 
in the western North Atlantic (Hyde, O’Reilly, and Belkin, 2008; Belkin, Hyde, and 
O’Reilly, 2012). Currently the BOASNRA is being validated using in situ 
oceanographic data obtained off the U.S. Northeast. Other potential validation 
regions can be considered such as the Gulf of Mexico, U.S. West Coast, Alaskan 
Seas, and Hawaii. Expanding the validation test ground is especially beneficial to 
prospective operational and non-operational users of this frontal product. Indeed, 
other regions feature certain types of fronts that are not well represented off the U.S. 
Northeast. A few examples are: (a) river plumes of the Mississippi River (Gulf of 
Mexico), Columbia River (Washington-Oregon Shelf), and Yukon River (Bering Sea); 
(b) upwelling fronts off California; (c) leeway fronts in the Hawaii Islands wake. 
 

(3) The quality of gradient direction output product could be improved by developing 
advanced median filters customized for gradient direction. Three possible 
improvements are suggested below: 
3.1. Increasing window size. Computer experiments are needed with different 

sizes of the median filter window. Currently, the anisotropic median filter used 
in the SNRA is quite conservative: It is just 3 pixels wide (in the along-stripe 
direction) and 5 pixels tall (in the cross-stripe direction). We have chosen the 
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conservative approach (small window size) because one of our main goals 
was to avoid excessive smoothing of MODIS images, which is almost 
unavoidable when large windows are used. Yet, larger windows might be 
much more effective in suppressing (reducing) stripes in the gradient direction 
output product. Particularly, the window height increase up to 7 or even 9 
might be quite effective. Generally speaking, the height of median filter 
window could be safely increased up to DBS (Distance Between Stripes or 
simply stripe spacing). This approach would work just fine provided the DBS 
remains constant across the image. In such cases, the algorithm could be 
fully automated by utilizing autocorrelation function to determine DBS, and 
then using a median filter with a height carefully chosen (automatically 
selected) to approximate DBS from below: height < DBS – SW, where SW is 
stripe width. Possible complications arise from two factors: (1) DBS 
sometimes vary across the same image; (2) SW could vary, albeit slightly, 
along the same stripe, and it could also vary across the same image. Possible 
solutions could include the development of a fully context-sensitive median 
filter whose parameters adapt to the changing parameters of stripes in the 
image.  

3.2. Customizing adaptive median filter for gradient direction. Indeed, the 
nature of stripes in gradient direction fields is quite different from that of 
gradient magnitude. Namely, gradient direction changes 180 degrees (makes 
a U-turn) while crossing orthogonally over a stripe. This change is described 
by a step function. This model is different from that of gradient magnitude 
changes in the vicinity of stripes, which is more complicated and variable. 
Therefore, the development of an adaptive median filter for gradient direction 
is fully warranted. This filter will take advantage of the relative simplicity of 
striping pattern in gradient direction fields. 

3.3. Applying circular median filter to gradient direction. Strictly speaking, the 
same median filter that works well with gradient magnitude should not be 
applied to gradient direction. The special nature of directional (circular or 
angular) data and the need for a special statistical theory of directional data 
have been recognized a while ago (Mardia, 1972; Fisher, 1996; Mardia and 
Jupp, 1999). The main cardinal difference between direction and magnitude is 
that direction is an inherently periodical physical quantity, whereas magnitude 
is not. Therefore the Cartesian ordering that works well in median filters 
applied to magnitude should not be used in filters intended for direction. 
Special circular filters have been developed for angular data (e.g., Nikolaidis 
and Pitas, 1998). Such filters can be applied to gradient direction in satellite 
oceanography. This has never been done before; therefore numerical 
experiments are required to choose the best filter or to develop a customized 
circular filter for the frontal product.     
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(4) Improvements in quality assessment can be achieved by including advanced metrics 
for monitoring the SNRA performance. One of such metrics is a measure of relative 
improvement of the SNRA output quality, RELIMP. The RELIMP differs from the 
aforementioned parameter NPIX (total number of pixels modified by SNRA) in that 
the RELIMP is basically NPIX normalized by the total number of valid pixels (pixels 
that contain valid data and are not cloud-masked or land-masked). Two other 
advanced parameters would calculate RELIMP and DIST2 (integrated pixel-based 
squared distance between the input and output images) for stripe pixels only. This 
step should await pattern recognition of stripes, which is a formidable task given the 
somewhat diffuse nature of stripes in MODIS images.     
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